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The stability of flow of a conducting fluid between parallel planes in a
magnetic field under the influence of infinitesimally small disturbances
has been investigated in a number of papers; in particular, for the case
of a longitudinal field, the stability curves have been obtained [ 1,2,3 1]
for various values of the magnetic Reynolds number R,. In these papers
the problem reduces to the detemmination of the eigenvalues from the so-
lution of a single differential equation of the Orr-Sommerfeld type of
the fourth or sixth order, and the corresponding boundary conditions.

If the magnetic field is perpendicular to the flow (Fig. 1), the
stationary distributions of the velocity U(ux, 0, 0)
and the magnetic field H(Hx, Hy, 0) between the planes

will be the following [41]: g 1 1 T"’
s
a
cosh M — yeosh M y Uz (#=0)
uy=wlo=Uo—gpr—g~ M=AR.R)") z
- " HoR,  HoR,, sinh My — ysinhM (A H \
x M — M cosh M — 1 - U0(4ﬂp)1/’ ) , ”.z‘/”j/
Hy = H, = const ”a? T T

Here H, 1s the unifom external field, U, is the velocity at the
center of the flow, M is the Hartmann number, R_ 1s the ordinary Reynolds

. . g
nunber, p is the density.

1079



1080 K.B. Pavlov and Iu.A. Tarasov

In an increasing magnetic field the velocity profile, which is para-
bolic for Hy = M= 0, defoms in such a way that at large M all the
changes in the profile occur in a narrow layer near the wall ~ a/M. The
stability of such a flow with respect to infinitesimally small disturb-
ances has been investigated [5], under the condition R, << 1, The aim
of the present work is the analogous problem for values of R, ~ 1, which
includes the region of high velocities and temperatures of the order

5000 - 10000°,

If the disturbances to the basic flow (1) are considered to be small,
and the system of magnetohydrodynamic equations is linearized in the
usual way, then it 1s possible to find a system of two differential equa-
tions for the small disturbances in the y-components of the velocity vy,
and the magnetic field h It is convenient to put these in the dimen-
sionless form

R ’

___h‘LIJ‘ L*
.._; a

— (@ — a0)

(w - C) (IY” — (112?) — W'Y .a_;?., (T"”—- 20:12\1;-" + algxy) e
g

M2 R i R
= ]ﬁ; {-—M"—‘h (@ — 0y20) — — (" — D) — —57- h”(D} 2)
Here
ky, = H® (y) exp {i [k, (z — Ct) 4 kzzl}, (C _ C)
v, = Us ¥ (y) exp {i [k, (z — Ct) + kazl}, Vo

k., k, are free numbers, C is the speed of propagation of the disturb-
ances; primes denote differentiation with respect to Y = y/a (where 2a
is the distance between the planes), a = k_a, 1 = alk, 2,k 2) The

boundary conditions for the system (2) have the form
V)=V ¥)=¥(¥)=0 for ¥ = 4-1 3)

If it is assumed that R, << 1, then the system (2) can be reduced to
the Orr-Sommerfeld equation for ¥

(w— o) (¥" — 0¥} — w a;g (F7" — 202F” | ap*Y) = (%)
which makes it possible to solve the corresponding stability problem by
the well-known method of Lin [6 ] for a much more complicated profile of
w. For R, < 1 the reduction to one equation is not possible, and it is
necessary to investigate the system (2) directly. In this connection,
use will be made, below, of the usual asymptotic methods [6 ] to extend
the results of [5] to a considerably higher interval of the quantity R,.
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It 1is known that the magnetic field is a stabilizing factor, i.e. in-
stability occurs at larger values of R_ when a magnetic field is present
than when it is absent [ 1-3, 51. Therefore, it is natural to look for
solutions of (2) in the form of an expansion in powers of 1/aBg

¥, ® =y, ®© 4 '?{;T (1) oW ., (5)
g

Putting (5) in (2), we have

(w— ) (O — a,2¥) — T = 0 (6)

R, y(0)
7* rylo = = {w—c¢) o© + ((D(O) o (112@(0)) (7
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.............................

The solutions ¥, , = @, 2( , which may be obtained from (%), are

"nonviscous” solutmns [67. A second pair of "nonviscous" solutions
® ,=9 2(0) is obtained from (7).

Examining Equations (7) and (8), it may be noted that, for R, << 1,
in the expansion (5) for ¥, we may restrict ourselves to the zero approx-
imation; however, as R increases, the next approximation, generally
speaking, may become equal to it, so that it is unjustified to neglect 1it.
Finding the expressions % and ¥’ from (7) and (8), it is p0351b1e
to determine the upper limit on the values of R, for which it is still
possible to restrict oneself to the zero approximation with sufficient
accuracy; however, it is simplest to do this with the help of the solu-
tion of system (2) in the vicinity of the critical point ¥ = Y_ (where
v = c), making use of the fact that with these solutions must be identi-
fied both pairs of the "nonviscous" solutions obtained below [6].

Here it is assumed that the flow is at values of ¥ ~ 1/4 (for larger
values of ¥ it would be necessary to use the approximations introduced
in [51). The influence of the parameter M on the rate of convergence of
the expansion (5) is not important; a small increase in M will bring
about an appreciable increase in the critical number R at which the
flow becomes unstable,

We look for other solutions of system (2) in the form

Y = exp g gdY, © = exp S EdY

1 B 9
g, g = ((IRg) /“gm E0+gls §1 -+ (aRg)—/zgg, Ez L., ( )
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Equating coefficients of equal powers of aRg, we find

B —_— 5 go
=+ Viw—o), Bi=—5
There is no analogous procedure for finding &;, £,, ... and g,, g;,
..., since in each corresponding equation there are two unknowns. If
these last terms may be neglected (we shall return to this point below),

then there are two solutions
Y

5
1}/‘3' = (w—c) *expTF S [iaRg (w — C)]l/de] (10)
Ye

which are "viscous” solutions [6 ] of the system (2).
The asymptotic expressions (10) are not good in the vicinity of the

critical point Y . To find the solution in that vicinity, we introduce a
new variablen = (Y - Y )/e, € = (aRg)" 173 Putting

¥, W) =x xm=x" x4 P
= ! - ” (ETE ” ” I 11
w—.c=w/'en +-w," 5 +.o.., w'=w 4w en 4., w, =w(Y,) (11)

into Equations (2), and equating coefficients of the same powers of ¢,
we obtain

iX(O)”” + w,’ rD((O)" =0, ix(l)"” + w, My " w,"x (0 .2l w, "y (0)7]2 (12)
xO =0, wV = — R x @, ... (13)

Equations (12), (13) give four solutions yx = X1,2,3,4 and two solu-
tions k = ST If the condition

R, ‘<R, (14)

is fulfilled, then, for the solutlonsx X1,2,3, 4 it is suff1c1ently
accurate to restrict the expansion to the first two temms of (11), since
under this condition the parameter R, cannot make the succeeding temms
of the expansion equal to these f1rst two. Making use of the asymptotlc
expansions of the Hankel functions in terms of which the solutions x(

and x{!) are expressed, it may be shown that the solutions x = ¥, , are
equal to the solutions ¥;, ¥,, which are found from (6) by the method of
Frobenius; the solutions x = x, , are equal to ¥;, ¥,, given by (10); the
solutions « = Ky, o can be 1dent1f1ed with the second pair of nonviscous
solutions ®;, ®, (in this connection, it is useful to mote the analogous
results whlch occur in the case of a longitudinal field[2,31). Thus it
may be concluded that the expansions for the solutions ¥, ¥,, ¥,, ¥,

are selected correctly, so long as condition (14) is fulfilled.
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If the above asymptotic methods are applied in looking for solutions
of Equations (4), it may be concluded that the corresponding nonviscous
solutions, as well as the viscous solutions and the solutions near the
critical point, are identical with the solutions W1,2,3 X1 2.3 4) of
system (2), to the accuracy possible in the solution of this class of
problems. Therefore, if condition (14) is fulfilled, it is possible to
investigate Equations (4) together with system (2), which corresponds to
the fact that the influence of the magnetic field on the flow stability
is due mainly to the change in the basic velocity profile. Since Equations
(4) are used to investigate the stability of flows with R, << 1, the well-
known results for that case [ 5] may be extrapolated to large values of
R,, up to values of R, ~ 1, so long as condition (14) is still reliably
fulfilled. In conclusion, the authors express their thanks to K.P. Staniu-
kovich for discussions of the results.
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