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'Ihe stability of flow of a conducting fluid between parallel planes in a 

magnetic field under the influence of infinitesimally snail disturbances 

has been investigated in a number of pqers; in particular, for the case 

of a longitudinal field, the stability curves have been obtained [ 1,2,3 1 
for various values of the magnetic Reynolds nunber Rm. In these papers 
the problem reduces to the determination of the eigenvalues from the so- 

lution of a single differential equation of theOrr-Sommerfeld type of 

the fourth or sixth order, and the corresponding boundary conditions. 

If the magnetic field is perpendicular to the flow (Fig. l), the 

stationary distributions of the velocity U(ux, 0, 0) 
and the magnetic fieldH(H%, HY, 0) between the planes 

will be the following [4 1: 
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Here Ho is the unifon external field, U, is the velocity at the 

center of the flow, M is the Hartmann number, 

nunber, p is the density. 

Rg is the ordinary Reynolds 
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In an increasing magnetic field the velocity profile, which is para- 

bolic for H,, = M = 0, deforms in such a way that at large M all the 

changes in the profile occur in a narrow layer near the wall * a,&. Ihe 

stability of such a flow with respect to infinitesimally small disturb- 

ances has been investigated [5 1, under the condition Rm << 1. 'Ihe aim 
of the present v+ork is the analogous problem for values of Rm w 1, which 
includes the region of high velocities and temperatures of the order 

5000- 1000~. 

If the disturbances to the basic flow (1) are considered to be snail, 

and the system of magnetohydrodynamic equations is linearized in the 

usual way, then it is possible to find a system of tuo differential equa- 

tions for the sndl disturbances in the y-components of the velocity vy 

and the magnetic field hy. It is convenient to put these in the dimen- 

sionless form 

$, = H@ (y) exp Ci [k, (z - Cl) + kzzl}, 

2’ 
Ii 

= U. Y” (3) exp (i Ik, (z - Ct) + ktzJf, 

(2) 

kx, kZ are free nunbers, C is the speed of propagation of the disturb- 

ances; primes denote differentiation with respect to Y = y/a (where 2a 

is the distance between the planes), a = kxa, aI2 = a(kx2 + ky2). The 

boundary conditions for the system (2) have the form 

CD (Y) = Y (Y) = Y’ (Y) = 0 for Y=I_tf (3) 

If it is assumed that R, << 1, then the system (2) can be reduced to 
theOrr-Sormnerfeld equation for Y 

(78 - c) (V - r.QY] - w"Y Jr -& (Y?" - 2apP + Czl'Y) = (4) 
!z 

which makes it possible to solve the corresponding stability problem by 

the well-known method of Lin [6 I for a much more complicated profile of 

w. For Rs S$ 1 the reduction to one equation is not possible, and it is 

necessary to investigate the system (2) directly. In this connection, 

use will be made, below, of the usual asymptotic methods [6 1 to extend 

the results of [ 5 ] to a considerably higher interval of the quantity R,,,. 
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It is known that the magnetic field is a stabilizing factor, i.e. in- 
stability occurs at larger values of RB when a magnetic field is present 
than when it is absent [l-3, 5 3. Th erefore, it is natural to look for 
solutions of (2) in the form of an expansion in powers of l/a R, 

Y, @ = Y(O)* a,(O) + 1 y?(l) 
aRg * 

($1 _c , I.. (5) 

Putting (5) in (2), we have 

(W- c)(Y@)- C&V)- ,,qJ(O) = 0 (6) 

Rnl y(O)’ 
M h$oj _ i c1  = (w - c) CD(*) + _& (($0)” _ al”~w) 

17) 

(WI-4fY (1)” _ alyol) _ u"y(lf + i (y(o)"" _ &@y(Of" + ,14yfo)) =L 

= UMh p(O)” _ alzcJ)Ro) _ L/c (~@Y _ a,z~w) _ &/f/p@ (0) 
@I 

m 

. . . . . . . . . . . . . . . . . . . . * .I....., 

The solutionsY1 2 = @, z(a), which may be obtained from (G, are 
RnonviscousR soluti&s I6 f. A 
@ 
1,2 = ~1,2(o) is obtained fromsT;n;nd pair of "nonvismus" solutions 

hamining Equations (7) and (8), it may be noted that, for R, << 1, 
in the expansion (5) for Y, we may restrict ourselves to the zero approx- 
imation; however, as Rv increases, the next ~p~~rna~on, generally 
speaking, may become equal to it, 
Finding the expressions iDto) 

so that it is unjustified to neglect it. 
and Y(l) from (7) and (8), it is possible 

to determine the upper limit on the values of R, for which it is still 
possible to restrict oneself to the zero approximation with sufficient 
accuracy; however, it is simplest to do this with the help of the solu- 
tion of system (2) in the vicinity of the critical point Y = Y, (where 
w = c), making use of the fact that with these solutions must be identi- 
fied both pairs of the "nonviscous" solutions obtained below [6 I. 

Here it is assumed that the flow is at values ofM_ l/4 (for larger 
values of M it muld be necessary to use the approximations introduced 
in E5 1 ), 'Ihe influence of the parameter 1K on the rate of convergence of 
the expansion (5) is not important; a snail increase in JV will bring 
about an appreciable increase in the critical number R,, at which the 

flow becomes unstable. 

We look for other solutions of system (2) in the form 

Y = exp gdY, 
s @=exp @Y 

s 

g, E = (aR&'& EL?+&? El + (qpg2, $2 -+. . . 
(9) 
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Equating coefficients of equal powers of a R,, we find 

go = rt V/i (w -c), 
5 go' gl=--- 
2 go 

There is no analogous procedure for finding to, tl, . . . and g,, g,, 

. ..) since in each corresponding equation there are tuo unknowns. If 

these last terms may be neglected (we shall return to this point below), 

then there are two solutions 

5 Y 

Y 3, 4 = (w - 4 ’ exp T 
s 

[ iaRg (w - c)l”hdY] (10) 

YC 

which are "viswusn solutions 16 1 of the system (2). 

'lhe asymptotic expressions (10) are not good in the vicinity of the 

critical point Y . To find the solution in that vicinity, we introduce a 
new variable v ='(Y- YC)/6, E = (aRg)-1’3. Putting 

y, @W) =x, x h) = x(O), x + &X(l), x(l) f. . I 

(W w -.c = WC’&? + weu - 2, I-.“, w” = wc’f + W,“‘&Tj f. . . , (w, = w W,) (II) 

into Equations (2), and equating coefficients of the same powers of C, 

we obtain 

ix(O)“” 
+ Wc”lx 

CO)” = 0, pm* + wclqx (1)” = wCflX (0) _ $ wcflx CO+2 (12) 

,(O)” = () $)” = _ RmX (0)’ ). . (13) 

.b ations (121, (13) give four solutions x= x1,2,3,4, and two solu- 

tlons K = K~ 2. If the condition 
* 

Rm4 < Rg (14) 

is fulfilled, then, for the solutions x = x1 2 3 4, it is sufficiently 

accurate to restrict the expansion to the fikst Lo terms of (111, since 

under this condition the parameter R, cannot make the succeeding terms 

of the expansion equal to these first two. Making use of the asymptotic 

expansions of the Hankel functions in terms of which the solutions x 

and x(l) are expressed, it may be shown that the solutions x = xl,z are 

equal to the solutions Y,, Y,, which are found from (6) by the method of 

Frobenius; the solutions x = x3 4 are equal to Y3, Yv,, given by (10); the 

solutions K = K1 2 can be identified with the second pair of nonviscous 

solutions 01, $* (in this connection, it is useful to note the analogous 

results which occur in the case of a longitudinal field f 2,3 I). Thug it 
may be concluded that the eqansions for the solutions Yr, Y2, Y3, UT, 

are selected correctly, so long as condition (14) is fulfilled. 
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If the above asymptotic methods are applied in looking for solutions 

of Equations (41, it may be concluded that the corresponding nonviscous 

solutions, as well as the viscous solutions and the solutions near the 

critical point, are identical with the solutions UI, 2 3 4(x1 2 3 4) of 

system (2), to the accuracy possible in the solutio: if'this'cia& of 

problems. Therefore, if condition (14) is fulfilled, it is possible to 

investigate Equations (4) together with system (2), which corresponds to 

the fact that the influence of the magnetic field on the flow stability 

is due mainly to the change in the basic velocity profile. Since Equations 

(4) are used to investigate the stability of flows with Rlll << 1, the well- 

known results for that case [ 5 1 may be extrapolated to large values of 

R ,,,, up to values of R - 1, so long as condition (14) is still reliably 

fulfilled. In conclus:on, the authors express their thanks to K.P. Staniu- 

kovich for discussions of the results. 
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